6 resultados para divergence time

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we propose a method to estimate by maximum likelihood the divergence time between two populations, specifically designed for the analysis of nonrecurrent rare mutations. Given the rapidly growing amount of data, rare disease mutations affecting humans seem the most suitable candidates for this method. The estimator RD, and its conditional version RDc, were derived, assuming that the population dynamics of rare alleles can be described by using a birth–death process approximation and that each mutation arose before the split of a common ancestral population into the two diverging populations. The RD estimator seems more suitable for large sample sizes and few alleles, whose age can be approximated, whereas the RDc estimator appears preferable when this is not the case. When applied to three cystic fibrosis mutations, the estimator RD could not exclude a very recent time of divergence among three Mediterranean populations. On the other hand, the divergence time between these populations and the Danish population was estimated to be, on the average, 4,500 or 15,000 years, assuming or not a selective advantage for cystic fibrosis carriers, respectively. Confidence intervals are large, however, and can probably be reduced only by analyzing more alleles or loci.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconstructing the evolutionary history of Hox cluster origins will lead to insights into the developmental and evolutionary significance of Hox gene clusters in vertebrate phylogeny and to their role in the origins of various vertebrate body plans. We have isolated two Hox clusters from the horn shark, Heterodontus francisci. These have been sequenced and compared with one another and with other chordate Hox clusters. The results show that one of the horn shark clusters (HoxM) is orthologous to the mammalian HoxA cluster and shows a structural similarity to the amphioxus cluster, whereas the other shark cluster (HoxN) is orthologous to the mammalian HoxD cluster based on cluster organization and a comparison with noncoding and Hox gene-coding sequences. The persistence of an identifiable HoxA cluster over an 800-million-year divergence time demonstrates that the Hox gene clusters are highly integrated and structured genetic entities. The data presented herein identify many noncoding sequence motifs conserved over 800 million years that may function as genetic control motifs essential to the developmental process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification of the progenitors of plants endemic to oceanic islands often is complicated by extreme morphological divergence between island and continental taxa. This is especially true for the Hawaiian Islands, which are 3,900 km from any continental source. We examine the origin of Hesperomannia, a genus of three species endemic to Hawaii that always have been placed in the tribe Mutisieae of the sunflower family. Phylogenetic analyses of representatives from all tribes in this family using the chloroplast gene ndhF (where ndhF is the ND5 protein of chloroplast NADH dehydrogenase) indicate that Hesperomannia belongs to the tribe Vernonieae. Phylogenetic comparisons within the Vernonieae using sequences of both ndhF and the internal transcribed spacer regions of nuclear ribosomal DNA reveal that Hesperomannia is sister to African species of Vernonia. Long-distance dispersal northeastward from Africa to southeast Asia and across the many Pacific Ocean island chains is the most likely explanation for this unusual biogeographic connection. The 17- to 26-million-year divergence time between African Vernonia and Hesperomannia estimated by the DNA sequences predates the age of the eight existing Hawaiian Islands. These estimates are consistent with an hypothesis that the progenitor of Hesperomannia arrived at one of the low islands of the Hawaiian-Emperor chain between the late Oligocene and mid-Miocene when these islands were above sea level. Subsequent to its arrival the southeast Pacific island chains served as steppingstones for dispersal to the existing Hawaiian Islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent study of the divergence times of the major groups of organisms as gauged by amino acid sequence comparison has been expanded and the data have been reanalyzed with a distance measure that corrects for both constraints on amino acid interchange and variation in substitution rate at different sites. Beyond that, the availability of complete genome sequences for several eubacteria and an archaebacterium has had a great impact on the interpretation of certain aspects of the data. Thus, the majority of the archaebacterial sequences are not consistent with currently accepted views of the Tree of Life which cluster the archaebacteria with eukaryotes. Instead, they are either outliers or mixed in with eubacterial orthologs. The simplest resolution of the problem is to postulate that many of these sequences were carried into eukaryotes by early eubacterial endosymbionts about 2 billion years ago, only very shortly after or even coincident with the divergence of eukaryotes and archaebacteria. The strong resemblances of these same enzymes among the major eubacterial groups suggest that the cyanobacteria and Gram-positive and Gram-negative eubacteria also diverged at about this same time, whereas the much greater differences between archaebacterial and eubacterial sequences indicate these two groups may have diverged between 3 and 4 billion years ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Himalayacetus subathuensis is a new pakicetid archaeocete from the Subathu Formation of northern India. The type dentary has a small mandibular canal indicating a lack of auditory specializations seen in more advanced cetaceans, and it has Pakicetus-like molar teeth suggesting that it fed on fish. Himalayacetus is significant because it is the oldest archaeocete known and because it was found in marine strata associated with a marine fauna. Himalayacetus extends the fossil record of whales about 3.5 million years back in geological time, to the middle part of the early Eocene [≈53.5 million years ago (Ma)]. Oxygen in the tooth-enamel phosphate has an isotopic composition intermediate between values reported for freshwater and marine archaeocetes, indicating that Himalayacetus probably spent some time in both environments. When the temporal range of Archaeoceti is calibrated radiometrically, comparison of likelihoods constrains the time of origin of Archaeoceti and hence Cetacea to about 54–55 Ma (beginning of the Eocene), whereas their divergence from extant Artiodactyla may have been as early as 64–65 Ma (beginning of the Cenozoic).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When many protein sequences are available for estimating the time of divergence between two species, it is customary to estimate the time for each protein separately and then use the average for all proteins as the final estimate. However, it can be shown that this estimate generally has an upward bias, and that an unbiased estimate is obtained by using distances based on concatenated sequences. We have shown that two concatenation-based distances, i.e., average gamma distance weighted with sequence length (d2) and multiprotein gamma distance (d3), generally give more satisfactory results than other concatenation-based distances. Using these two distance measures for 104 protein sequences, we estimated the time of divergence between mice and rats to be approximately 33 million years ago. Similarly, the time of divergence between humans and rodents was estimated to be approximately 96 million years ago. We also investigated the dependency of time estimates on statistical methods and various assumptions made by using sequence data from eubacteria, protists, plants, fungi, and animals. Our best estimates of the times of divergence between eubacteria and eukaryotes, between protists and other eukaryotes, and between plants, fungi, and animals were 3, 1.7, and 1.3 billion years ago, respectively. However, estimates of ancient divergence times are subject to a substantial amount of error caused by uncertainty of the molecular clock, horizontal gene transfer, errors in sequence alignments, etc.